20 research outputs found

    Algorithmes d'adressage et routage pour des réseaux fortement mobiles à grande échelle

    Get PDF
    After successfully connecting machines and people later (world wide web), the new era of In-ternet is about connecting things. Due to increasing demands in terms of addresses, mobility, scalability, security and other new unattended challenges, the evolution of current Internet archi-tecture is subject to major debate worldwide. The Internet Architecture Board (IAB) workshop on Routing and Addressing report described the serious scalability problems faced by large backbone operators in terms of routing and addressing, illustrated by the unsustainable growth of the Default Free Zone (DFZ) routing tables. Some proposals tackled the scalability and IP semantics overload issues with two different approaches: evolutionary approach (backward com-patibility) or a revolutionary approach. Several design objectives (technical or high-level) guided researchers in their proposals. Mobility is definitely one of the main challenges.Inter-Vehicle Communication (IVC) attracts considerable attention from the research com-munity and the industry for its potential in providing Intelligent Transportation Systems (ITS) and passengers services. Vehicular Ad-Hoc Networks (VANETs) are emerging as a class of wire-less network, formed between moving vehicles equipped with wireless interfaces (cellular and WiFi) employing heterogeneous communication systems. A VANET is a form of mobile ad-hoc network that provides IVC among nearby vehicles and may involve the use of a nearby fixed equipment on the roadside. The impact of Internet-based vehicular services (infotainment) are quickly developing. Some of these applications, driver assistance services or traffic reports, have been there for a while. But market-enabling applications may also be an argument in favor of a more convenient journey. Such use cases are viewed as a motivation to further adoption of the ITS standards developed within IEEE, ETSI, and ISO.This thesis focuses on applying Future Internet paradigm to vehicle-to-Internet communica-tions in an attempt to define the solution space of Future Vehicular Internet. We first introduce two possible vehicle-to-Internet use cases and great enablers for IP based services : eHealth and Fully-electric Vehicles. We show how to integrate those use cases into IPv6 enabled networks. We further focus on the mobility architectures and determine the fundamental components of a mobility architecture. We then classify those approaches into centralized and distributed to show the current trends in terms of network mobility extension, an essential component to vehicular networking. We eventually analyze the performance of these proposals. In order to define an identifier namespace for vehicular communications, we introduce the Vehicle Identification Numbers are possible candidates. We then propose a conversion algorithm that preserves the VIN characteristics while mapping it onto usable IPv6 networking objects (ad-dresses, prefixes, and Mobile Node Identifiers). We make use of this result to extend LISP-MN protocol with the support of our VIN6 addressing architecture. We also apply those results to group IP-based communications, when the cluster head is in charge of a group of followers.Cette thèse a pour objectif de faire avancer l'état de l'art des communications basée sur Internet Protocol version 6 (IPv6) dans le domaine des réseaux véhiculaires, et ce dans le cadre des évolutions récentes de IP, notamment l'avènement du Future Internet. Le Future Internet (F.I.) définit un ensemble d'approches pour faire évoluer l'Internet actuel , en particulier l'émergence d'un Internet mobile exigeant en ressources. Les acteurs de ce domaine définissent les contraintes inhérentes aux approches utilisées historiquement dans l'évolution de l'architecture d'Internet et tentent d'y remédier soit de manière évolutive soit par une rupture technologique (révolutionnaire). Un des problèmes au centre de cette nouvelle évolution d'Internet est la question du nommage et de l'adressage dans le réseau. Nous avons entrepris dans cette thèse l'étude de ce problème, dans le cadre restreint des communications véhiculaires Internet.Dans ce contexte, l'état de l'art du Future Internet a mis en avant les distinctions des approches révolutionnaires comparées aux propositions évolutives basées sur IPv6. Les réseaux véhiculaires étant d'ores-et-déjà dotés de piles protocolaires comprenant une extension IPv6, nous avons entamé une approche évolutive visant à intégrer les réseaux véhiculaires au Future Internet. Une première proposition a été de convertir un identifiant présent dans le monde automobile (VIN, Numéro d'Identification de Véhicule) en un lot d'adresses réseau propres à chaque véhicule (qui est donc propriétaire de son adressage issu de son identifiant). Cette proposition étant centrée sur le véhicule, nous avons ensuite intégré ces communications basés dans une architecture globale Future Internet basée sur IPv6 (protocole LISP). En particulier, et avec l'adressage VIN, nous avons défini un espace d'adressage indépendant des fournisseurs d'accès à Internet où le constructeur automobile devient acteur économique fournissant des services IPv6 à sa flotte de véhicules conjointement avec les opérateurs réseau dont il dépend pour transporter son trafic IP. Nous nous sommes ensuite intéressés à l'entourage proche du véhicule afin de définir un nouveau mode de communication inter-véhiculaire à Internet: le V2V2I (Angl. Vehicle-to-Vehicle-to-Infrastructure). Jusqu'à présent, les modes de transmission de données à Internet dans le monde du véhicule consistaient en des topologies V2I, à savoir véhicule à Internet, où le véhicule accède à l'infrastructure directement sans intermédiaire. Dans le cadre des communications véhiculaires à Internet, nous proposons une taxonomie des méthodes existantes dans l'état de l'art. Les techniques du Future Internet étant récentes, nous avons étendu notre taxonomie par une nouvelle approche basée sur la séparation de l'adressage topologique dans le cluster de celui de l'infrastructure. Le leader du cluster s'occupe d'affecter les adresses (de son VIN) et de gérer le routage à l'intérieur de son cluster. La dernière contribution consiste en la comparaison des performances des protocoles de gestion de mobilité, notamment pour les réseaux de véhicules et des communications de type vehicule-à-Internet. Dans ce cadre, nous avons proposé une classification des protocoles de gestion de mobilité selon leur déploiement: centralisé (basé réseau ou host) et distribué. Nous avons ensuite évalué les performances en modélisant les durées de configurations et de reconfigurations des différents protocoles concernés

    Data Consistency in the 5G Specification

    Get PDF
    International audienceMeeting the goals of 5G networks-high bandwidth, low latency, massive connectivity, and resiliency demands improvements to the infrastructure that hosts the network components. Mobile Network Operators will rely on a geographically distributed and highly scalable infrastructure that must handle and replicate user data consistently. This paper explores the management of user data with regards to data consistency in the first 5G specification. In particular we will focus on how the 5G system procedures handle and update data, and discuss failure scenarios where the correctness properties of the user data may be violated. In this work we present the necessary properties that an underlying data store must deliver in order to maintain correctness in the presence of failures

    eHealth Service Support in Future IPv6 Vehicular Networks

    No full text
    Recent vehicular networking activities include novel automotive applications, such as public vehicle to vehicle/infrastructure (V2X), large scale deployments, machine-to-machine (M2M) integration scenarios, and more. The platform described in this paper focuses on the integration of eHealth in a V2I setting. This is to allow the use of Internet from a vehicular setting to disseminate health-related information. From an eHealth viewpoint, the use of remote healthcare solutions to record and transmit a patient’s vital signs is a special telemedicine application that helps hospital resident health professionals to optimally prepare the patient’s admittance. From the automotive perspective, this is a typical vehicle-to-infrastructure (V2I) communication scenario. This proposal provides an IPv6 vehicular platform, which integrates eHealth devices and allows sending captured health-related data to a personal health record (PHR) application server in the IPv6 Internet. The collected data is viewed remotely by a doctor and supports his diagnostic decision. In particular, our work introduces the integration of vehicular and eHealth testbeds, describes related work and presents a lightweight auto-configuration method based on a DHCPv6 extension to provide IPv6 connectivity with a few numbers of messages

    Demo Abstract: 5G End-to-End Open Source Network with Traffic Prioritization Mechanism

    No full text
    International audienceIn this demonstration, we make use of the recent advances in network softwarization to introduce an End-to-End software-based mobile network with traffic prioritization mechanism. We focus on the Radio Access Network (RAN), where our prioritization algorithm is implemented. The proposed traffic prioritization mechanism guarantees higher throughput and lower delay for time-sensitive and critical services such as connected cars. It is also an enabler for RAN Slicing that allows for End-to-End network slicing. Our network is deployed on commodity hardware, and we prioritize the downlink flow of a connected car over downlink video streaming traffic

    Analyzing Dynamic IPv6 Address Auto-configuration Techniques for Group IP-based Vehicular Communications

    No full text
    International audienceDynamic IPv6 addressing and routing configuration in vehicular networks is an important challenge that has attracted a fair amount of attention recently. Early proposals adapted fixed-infrastructure and MANET models and thus inherited their latency and overhead. Later, researchers relaxed some of the often restrictive assumptions (e.g., Router Advertisement TTL extension) but still focused on certain limited scenarios. Very recently, in the wake of the emerging concept of Future Internet, a general questioning arose on whether one naming and addressing model suits every network topology. Along this line of research, the present article poses the terms of this problem in the IP-based vehicular communications area and aims at giving one solution space instance based on the Vehicle Identification Numbers (VIN) namespace. This article advances the state-of-the-art as follows: (1) It presents a comprehensive and detailed tutorial of the main dynamic IPv6 auto-configuration approaches. (2) It gives the specifics of Future Internet paradigm as applied to vehicular networking and presents a novel approach for group and infrastructure communications based on VIN namespace. (3) It offers a comprehensive feature and analytical comparison to evaluate the proposals that fit best our communication paradigm

    Monitoring Virtualized Telco Services for Multisided Platforms with SQL-like Query

    No full text
    International audienceThe Telco ecosystem transformation towardscloud-native network services enables constructingan integrative platform business model inthe form of a Multi-Sided Platform (MSP) leveragingmicroservice-based Virtualized Network Functionarchitecture. In particular, MSP based architecturesenable a multi-organizational ecosystemwith increased automation possibilities for carriergradeservices creation and operations. We presenta microservice-based monitoring system for virtualizedTelco services based on OpenAirInterface (OAI)with an SQL-like query manager for metrics. Wedemonstrate two monitoring scenarios: (1) Averagereceiving (rx) PDU in bytes at MAC layer from thetargeted user equipment (UE). (2) Finding the UEwho consumes the most Physical Resource Blocks(PRB) within a specific time interval for the uplinkand downlink transmission

    LUMEN: A Global Fault Management Framework For Network Virtualization Environments

    Get PDF
    International audienceThe advent of 5G and its ever increasing stringent requirements for bandwidth, latency, and quality of service pushes the boundaries of what is feasible with legacy Mobile Network Operators' technologies. Network Function Virtualization (NFV) is one promising attempt at solving some of those challenges that were widely adopted by the industry and the standardization bodies. At its essence, NFV is about running network functions as software workloads on commodity hardware to optimize deployment costs and simplify the life-cycle management of network functions. However, it introduces new fault management challenges including dynamic topology, multi-tenant fault isolation and data consistency and ambiguity; that we propose to define in this paper. To tackle those challenges, we extend the classical fault management process to the virtualized functions by introducing LUMEN: a Global Fault Management Framework. Our approach aims at providing the availability and reliability of the virtualized 5G end-to-end service chain. LUMEN includes the canonical steps of the fault management process and proposes a monitoring solution for all types of Network virtualiza-tion Environments. Our framework is based on open source solutions and could easily be integrated with other existing autonomic management models

    SFC Self-Modeling and Active Diagnosis

    No full text
    International audienceThe 5G system should be flexible to cope with diversity of functions and infrastructure, in an efficient way while supporting a wide range of services associated with a set of requirements through Service Function Chaining (SFC). Fault management plays a paramount role to fulfill the SFC requirements towards reliability of telecommunication networks. Model-based (MB) approaches are knowledge-based systems that reason about a system from an explicit representation of its structure and functional behavior through a dependency model. MB techniques solve novel diagnosis problems and provide explanations for their decisions. However, current MB methods suffer from some limitations due to network virtualization challenges: lack of network visibility and dynamic topologies. To tackle those limitations, we propose a self-modeling approach and an active diagnosis process for virtual networks that considers two types of knowledge to build the model: acquired knowledge and learned knowledge provided by fault injection to expand and validate the proposed model. The experimental results from their application to a real-world virtual IP Multimedia Subsystem (vIMS) use case show that the self-modeling and the active diagnosis procedures are effective in determining the root cause(s) of a failure and explaining fault propagation
    corecore